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Bar-coded multiplexed sequencing approaches based on new-
generation sequencing technologies provide capacity to sequence
a mapping population in a single sequencing run. However, such
approaches usually generate low-coverage and error-prone se-
quences for each line in a population. Thus, it is a significant
challenge to genotype individual lines in a population for linkage
map construction based on low-coverage sequences without the
availability of high-quality genotype data of the parental lines. In
this paper, we report a method for constructing ultrahigh-density
linkage maps composed of high-quality single-nucleotide poly-
morphisms (SNPs) based on low-coverage sequences of recombi-
nant inbred lines. First, all potential SNPs were identified to obtain
drafts of parental genotypes using a maximum parsimonious in-
ference of recombination, making maximum use of SNP informa-
tion found in the entire population. Second, high-quality SNPs
were identified by filtering out low-quality ones by permutations
involving resampling of windows of SNPs followed by Bayesian
inference. Third, lines in the mapping population were genotyped
using the high-quality SNPs assisted by a hidden Markov model.
With 0.05× genome sequence per line, an ultrahigh-density link-
age map composed of bins of high-quality SNPs using 238 recombi-
nant inbred lines derived from a cross between two rice varieties
was constructed. Using this map, a quantitative trait locus for
grain width (GW5) was localized to its presumed genomic region
in a bin of 200 kb, confirming the accuracy and quality of the map.
This method is generally applicable in genetic map construction
with low-coverage sequence data.
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Genetic maps provide the bases for a wide range of genetic and
genomic studies and are pivotal for mapping and identifying

genes associated with phenotypic performance, referred to as
traits. The resolution of a genetic linkage map depends on the
number of recombination events in the mapping population and
the density of molecular markers. The number of recombination
events depends on how the population is created, whereas the
density of the markers can be improved continually with advances
in molecular techniques. Traditional molecular markers that have
been widely used in genotyping assays of populations, although
laborious and time-consuming, have limitations in throughput
and can provide information only for low-density maps, and thus
are of low efficiency.
Oligonucleotide microarrays, composed of millions of probes

based on genome sequences, can capture large numbers of se-
quence variations between different samples by comparative ge-
nomic hybridization,which can beused forhigh-throughputmarker
discovery and genotyping (1–3). However, restrictions in micro-
array design and the number of probes on the microarrays limit
the applications of this technology. In addition, it is cost-prohibitive
for genotyping especially if the mapping population is large.

New sequencing technologies provide the capacity for mas-
sively parallel resequencing of genomes and thus can be used for
genotyping. Based on bar-coded multiplexed sequencing strate-
gies, these new sequencing techniques can be amended to obtain
sequences for a large number of samples simultaneously (4, 5),
offering the possibility to genotype a mapping population in
a single sequencing run. However, even with the availability of
new sequencing technologies, deep sequencing each line in a
mapping population is still too costly, whereas genotype in-
formation from contiguous markers is often highly redundant and
thus may not be all necessary for population genotyping. De-
pending on the research purpose, methods have been developed
for tradeoffs between sequence coverage and the amount of in-
formation. For example, Baird et al. (6) proposed a strategy fo-
cusing sequencing efforts on regions flanking restriction sites to
achieve reduction of genome complexity, which enables rapid
single-nucleotide polymorphism (SNP) discovery and genetic
mapping. However, this strategy exploits SNPs depending on
restriction sites of specific restriction enzymes and involves ad-
ditional complex experimental processes, thus limiting its appli-
cation. Huang et al. (7) developed a strategy for high-throughput
genotyping of recombinant inbred lines (RILs) derived from
a cross between two sequenced rice varieties (Nipponbare and 93-
11) by indexed whole-genome resequencing with ∼0.02-fold
coverage of rice genome for each line. An inherent shortcoming
associated with using such low-coverage sequences as genetic
markers is that the sequences are sparse and error-prone. To
overcome this problem, they developed a sliding-window ap-
proach for genotype calling of RILs by evaluating a group of
consecutive known SNPs rather than genotyping based on single
SNPs, taking advantage of the redundant information of contig-
uous markers. Although this approach is cost-effective and
powerful, its applicability in genotyping other mapping pop-
ulations is limited because it relies on high-quality sequences of
the parents to identify SNPs, which is still expensive.
Here we developed a parent-independent strategy for geno-

typing of a mapping population based on very low coverage se-
quencing of a population. Using this strategy, we constructed an
ultrahigh-density linkage map composed of high-quality SNPs
with very low depth sequence coverage of an RIL population
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derived from a cross between two unsequenced rice varieties. The
precision of this map was evaluated by localization of a previ-
ously cloned quantitative trait locus (QTL) for rice grain width to
a bin of∼200 kb containing the riceGW5 gene (8, 9). This strategy
is generally applicable and cost-effective for genotyping various
kinds of mapping populations.

Results
The workflow and key steps of the genotyping strategy are pre-
sented (Fig. S1). For illustration, we used the data of an RIL
population from a cross between two rice cultivars of the indica
subspecies, Zhenshan 97 and Minghui 63, the parents of the
most widely cultivated hybrid in China.

Sequencing RILs and Identifying Potential SNPs Without Sequences of
the Parents. A total of 238 RILs developed from the cross be-
tween Zhenshan 97 and Minghui 63 were resequenced with an
Illumina Genome Analyzer II using the bar-coded multiplexed
sequencing approach (4, 7).
A total of 142.6 million reads were resolved for these RILs

according to the bar codes. The bar codes in both paired reads
were checked, and read pairs starting with different bar codes
were discarded. After removing the bar-code sequences, all 36-
mer paired reads of RILs were aligned to the reference genome
Nipponbare (10) using the softwareMAQ (11). In this way, 95.4%
of reads could be mapped to the reference genome. An approx-
imately 20.6 Mb sequence, or ∼0.055-fold genome coverage, was
generated per RIL, and thus the total amount of sequence pro-
duced for all of the RILs yielded 13.1 genome equivalents.
For ease of description, we use the data of chromosome 5 to

demonstrate the idea and processes. To identify potential SNP
sites using sequences of RILs without sequences of the parents,
the mapped sequences of all of the RILs with mapping quality
no less than 40 (Materials and Methods) were merged to obtain
nucleotide information for each site. Because the nucleotides at
a real SNP site should be biallelic, potential SNP sites and the
two allelic nucleotides were identified according to their bimodal
distribution. In total, 15,795 putative SNP sites on chromosome 5
were identified between the two parents, ≈1 SNP per 1.9 kb.
After filtering out potential false-positive SNPs, we obtained
209,240 data points of SNPs from the 238 RILs, giving rise to an
average SNP density of 3 per 100 kb in an RIL.
To estimate the sequence error rate of the multiplexed se-

quencing approach, we identified consensus sequences in unique
genomic regions from all of the RILs and the maternal parent
Zhenshan 97 that was also sequenced to 0.032-fold genome
coverage under the same experimental conditions as the RILs.
Analysis of the Zhenshan 97 sequence recovered 272 of the
15,795 putative SNP sites. It was found that 3.18% (74,799/
2,354,886) of the nucleotides from the multiplexed sequencing of
Zhenshan 97 was different from the nucleotides which were
monomorphic in the RILs, providing an estimate for error rate of
the sequencing approach in this study.

UsingMaximumParsimonyofRecombination to Infer ParentalGenotypes
Based on SNPs of RILs. To construct a genetic linkage map, it is es-
sential to know the parental genotypes. In the age of high-
throughput sequencing, if the sequence depth is low, parental se-
quence information provides little useful information that can be
used as references of the parental SNP genotypes for map con-
struction. We propose a method using the principle of maximum
parsimony of recombination (MPR) to infer the parental genotypes
based on low-coverage resequencing of a population of genotypes
derived from RILs.
For a given set of RILs genotyped by a large number of SNPs

from resequencing, there will be numerous possibilities for the
“deduced parental genotypes” if there is no restriction with re-
spect to the number of recombination events. By MPR, we as-

sume that the parental genotypes would be ones that produce the
RIL genotypes with the smallest number of recombination events.
For simplicity, the idea is illustrated with a hypothetical dataset
consisting of five SNP sites and six RILs (matrix A, Fig. 1). A
common feature of the low-sequence-coverage dataset is that it
contains missing data at a large portion of SNP sites (shown as
blank cells). The biallelic states in matrix A of five SNPs (rows)
and six RILs (columns) are extracted into matrix B of five rows
and two columns (a and b). Assuming alleles in column a are all
from parent 1 and those in column b are all from parent 2, six
recombination events would be needed to produce genotypes of
the six RILs (matrix C).
We want to find the two parental genotypes that would produce

the six RILs with the smallest number of recombination events.
To do so, an iterative stepwise perturbation of the assumed pa-
rental genotypes (matrix B) was conducted by exchanging the
alleles between columns a and b, one at a time, and the resulting
“assumed genotype matrix” (matrixD) was again used to infer the
recombination events. In this process, an exchange of the alleles
at the second SNP site reduced the number of recombination
events from six to three, as indicated in matrix E. We thus fixed
these alleles in the matrix and continued the allele-swapping
process. Eventually, another exchange at the fourth SNP site
(matrix F) could produce the RIL genotypes with only one re-
combination event, the smallest number possible with this data-
set. We therefore accepted matrix F as the parental genotypes.
This procedure can be extended to a more general case of

a dataset composed of n putative SNP sites in a local genomic
region (window) and m RILs (or other types of mapping pop-
ulations). The only exception is that the number of SNP sites at
which alleles are swapped, referred to as step size s of a swap, may
not necessarily be one at a time, although it always starts with one.
If the allele swapping one at a time does not reduce the number of
recombination events (R), the step size can be increased by one
SNP site at a time until R can be reduced or the step size achieves
the defined maximum step size sm. Such iterative swapping would
continue until R cannot be further reduced.
Using the MPR method, we inferred the parental genotypes

based on the low-coverage sequences of the RILs. In this pro-
cedure, the SNPs were first divided along the chromosomes into
hundreds of small windows consisting of 50 adjacent SNPs (Fig.
2A). The windows were combined according to the SNP sites
recovered by the sequences of Zhenshan 97 (referred to as ZS-
SNPs) to ensure that at least 10 ZS-SNPs were included in each
window (Fig. 2B). The MPR procedure was performed within
each window using the SNP data of all of the RILs to predict the
genotypes of the parents. Because the Zhenshan 97 genotypes of
the 10 ZS-SNPs were known, albeit with a certain rate of errors,
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Fig. 1. An example of inferring parental genotypes based on the principle of
maximum parsimony of recombination (MPR). Different background colors rep-
resent different genotypes in matrices C, E, and G, whereas crosses indicate the
recombination breakpoints between different genotypes. See text for details.

Xie et al. PNAS | June 8, 2010 | vol. 107 | no. 23 | 10579

G
EN

ET
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1005931107/-/DCSupplemental/pnas.201005931SI.pdf?targetid=nameddest=STXT


the genotypes of other SNPs in this window would be assigned
Zhenshan 97 if ≥80% of the genotypes of ZS-SNPs are in agree-
ment with the predicted ones. Finally, the genotype calls from
different windowswere assembled according toZS-SNPs in each of
the windows to produce the “draft genotypes” for the two parents
(by default, if one parent was confirmed, the alternative would be
the other parent), Zhenshan 97 and Minghui 63 (Fig. 2C).

Refining Parental Genotypes by Resampling and Bayesian Inference
to Remove Low-Quality SNPs. Several sources of errors may arise in
the above-inferred draft genotypes. First, sequencing errors of
Zhenshan 97 would reduce the reliability of the ZS-SNPs. Sec-
ond, some of the SNP sites in RILs, although biallelic, may not
be of high quality, owing to sequencing errors or incorrect
alignments of reads from homologous regions. Third, chance
events may also contribute to errors in the inferred parental
genotypes by the MPR method.
To validate the inferred genotypes, we adopted a permutation

procedure involving local resamplings followed by Bayesian in-
ference to filter out low-quality SNPs and to refine the parental
genotype prediction (Fig. 2D–G). In this permutation procedure,
we arranged all SNPs along the chromosomes. The permutation
was based on the division of the 238 RILs and thus consisted of
238 steps. In the first step, 50 of the first 100 SNPs detected in the
first RIL (R001) were randomly sampled without replacement,
and analyzed using the MPR method to obtain an inference of
two haplotypes of 50 SNPs. A haplotype was assigned a parental
genotype if ≥80% of the SNPs were in agreement to a draft pa-
rental genotype. Then, 50 of the first 100 SNPs, which included
the 50 unsampled SNPs in the first step, were again randomly
sampled without replacement, and analyzed using the MPR
method to obtain another inference of the two parental genotypes
as described above. This process was repeated until all of the
SNPs that occurred in R001 were used in the inference, resulting
in an inferred SNP genotype for each parent at each SNP site. The
resulting genotype calls from these inferences were recorded and
assembled. In the second step, SNPs detected in the second line
(R002) were used in MPR analysis exactly in the same way as in
R001. This process was repeated for all of the 238 RILs.
The entire permutation process was repeated 20 times. Con-

sequently, if a nucleotide was sequenced in 10 of the 238 RILs,
200 genotype calls would be obtained for this SNP.

The effect of the number of permutations and the error rate of
theMPRmethodon the retention rateof reliableSNPswasevaluated
subject to two conditions: discarding SNP sites with low quality by
posterior probabilities (Bayesian inference), and removing ones with
the number of the minor genotype no less than the number of per-
mutations. It was shown that, depending on the number of permu-
tations and error rate (from 0.05 to 10%), 76.7–84.3% of all putative
SNPs were retained (Fig. S2), and assuming a smaller error rate of
MPR resulted in fewer remaining SNPs. The number of SNPs re-
mained stable after 10 permutations. Using a conservative error rate
of 0.05% for the MPR method, a total of 13,227 refined SNPs were
identified between the parents by 10 permutations. The SNPs and
inferred parental genotype calls are shown in Dataset S1.
To evaluate the accuracy of our MPR-based method, addi-

tional sequencing of ≈14-fold sequence coverage of each parental
line was generated. Using the processes and criteria stated in
SIMaterials andMethods, 11,948of the 15,795 SNPs identified from
the RIL sequences were confirmed. However, 1,031 of the 15,795
SNPs displayed two or more different nucleotides at a site within
a parent, owing to repetitive sequences or incorrect alignments.
We also compared these SNPs with the refined set of 13,227

high-quality SNPs resulting from permutations. It was found that
94.1% (970/1,031) of the inferior SNPs were removed by per-
mutations and thus were not included in the refined set, whereas
98.7% (11,792/11,948) of the high-quality SNP sites remained in
the refined set. The inferred parental genotype calls of all of the
11,792 sites were identical to the sequencing results, confirming
the reliability of the methods used in this study, in both SNP
identification and parental genotype inference. It should be
noted that 10.8% (1,435) of 13,227 SNPs in the refined set
identified from RIL sequences were not identified as SNPs from
deep sequencing, mostly because there were not enough se-
quences from one or both of the parents for the corresponding
SNP sites to satisfy the requirement for SNP identification.

Genotyping RILs Using a Hidden Markov Model. There were two
major difficulties in genotyping the RILs directly using the low-
coverage sequences. First, the error rate of the raw sequences of
the RILs was relatively high (3.18% by our estimate), which
would affect the accuracy of genotyping with individual SNPs.
Second, only one of the two alleles of an SNP site for a hetero-
zygote could be observed, and adjacent SNPs residing in a het-
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erozygous region would appear as a mixture of the two geno-
types, thus causing difficulty in genotype calling. To overcome
such difficulties, we treated the genotypes of SNPs along the
chromosome as a Markov chain. A simple hidden Markov model
(HMM) (12) was used to estimate the most likely underlying
SNP genotypes of the RILs based on the available information of
SNPs in a local region (Fig. 3).
The HMM was constructed with two observations (alleles of

each SNP, denoted asm and z) (Fig. 3B) and three hidden states,
corresponding to the two homozygotes (denoted as M/M and
Z/Z) and the heterozygote (M/Z). We began with an expected
proportion of three genotypes 49.75:0.50:49.75 of M/M:M/Z:Z/Z
in the RIL population. Because the error rate of the multiplexed
sequencing was estimated to be 3.18% and only a sequence error
happening to match the alternative nucleotide at an SNP site
could lead to an incorrect genotype assignment (1/3 chance), the
error rate of RIL genotype calls at a specific SNP site was cal-
culated to be 1.06%. After defining the transition probabilities
and emission probabilities (seeMaterials and Methods for details),
Viterbi’s algorithm (13) was used to determine the most likely
underlying genotype of the RILs. Based on the results, the pro-
portion of the three genotypesM/M:M/Z:Z/Z was estimated to be
49.16:0.32:50.52. We executed the HMM again using this ratio to
perform genotype calling, and the results were consistent and thus
converged to this ratio. In subsequent analyses, we masked all
heterozygous sites (0.34%) as missing data. Consecutive SNP sites
with the same genotype were lumped into blocks and a breakpoint
was assumed at the transition between two different genotype
blocks. Blocks with lengths less than 250 kb and the number of

sequenced SNPs fewer than five were masked as missing data to
avoid false double recombinations. In total, 600 breakpoints were
identified for chromosome 5 in the 238 RILs.

Constructing the Bin Map and Evaluation by QTL Analysis. In further
processing, genotypes for regions at the transitions between two
different genotype blocks were set to missing data and imputed
using the R/qtl package (14). Markers cosegregating in two
contiguous block borders were lumped as a bin (7, 15). After
merging adjacent bins of the same genotype across the entire
RIL population, a skeleton bin map was obtained with a total of
143 recombination bins on chromosome 5 for the 238 RILs (Fig.
3A). The average physical length of the recombination bins was
208.5 kb, ranging from 14.0 kb to 5.17 Mb. The genotypes of the
RILs and physical locations of the bins are shown in Dataset S2.
The quality of the map was evaluated by using it to identify

a QTL controlling grain width. Grain width data of the RIL
population were collected from field experiments in 2008, with
grain width of the RILs ranging from 2.15 to 3.55 mm. A simple
Student’s t test was used to locate the region associated with
grain width. A sharp peak with the largest effect on bin 40 was
detected, corresponding to the physical position of 5.162–5.368
Mb on chromosome 5. This region contains the cloned gene
GW5 for grain width located at 5.360–5.361 Mb (8, 9) (Fig. 3C).

Discussion
We have successfully developed a method for accurately in-
ferring the parental genotypes and constructing ultrahigh-density
genetic linkage maps of high-quality SNPs based on very low
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depth sequences of RILs. Compared with previous efforts of
map construction for populations of this cross using other
markers (16–19), this map has the highest density, and was
produced with the least labor, within the shortest time, and at
lowest cost. The analyses have demonstrated two salient features
of this method. The first is to obtain the parental genotypes
consisting of the largest possible number of high-quality SNPs
making maximum use of information provided by the low-depth
sequences of the entire RIL population. The second feature is
the highly accurate genotyping of the RILs with the help of the
high-quality parental SNPs, despite the relatively low quality and
low coverage of the RIL sequences. These two features enabled
the construction of a high-quality and ultrahigh-density map.
The most critical step of this method is to infer parental gen-

otypes. In this analysis, we transformed the challenge of inferring
parental genotypes into finding two sets of parental genotype calls
that generate the minimum number of recombination events in
the RILs. The MPR was then developed based on the assumption
that the observed recombination events in a set of local SNP sites
should be the most parsimonious. It should be noted that the role
of the low-coverage sequence of one parent in the analysis is to
provide a reference for the inferred parental genotypes. The
parental sequence per se does not contribute to the parental ge-
notype inference, and thus is not required for inference or map
construction. However, high-quality sequences of a reference
genome or draft sequences with well-defined genomic locations
would be necessary for this analysis.
It is also essential to filter out inferior SNPs for both high-

quality inference of the parental genotypes and for RIL geno-
typing. Recent studies showed that there are tremendous varia-
tions in structure and copy numbers of sequences between
different varieties (20, 21), and thus unique sequences in the
reference genomes might not be unique in other varieties.
Therefore, markers identified through direct comparison with the
reference may be error-prone and should be refined before use.
We devised amethod of permutations based on redundant linkage
information among adjacent SNPs involving resampling of win-
dows of 50 SNPs followed by Bayesian inference which was highly
effective to filter out inferior SNPs. With 1–20 permutations,
92–95% of the inferior SNPs could be filtered out while capturing
nearly 99% of real SNPs, thus greatly improving the accuracy of
SNP identification.
The application of HMM played a vital role in RIL genotyp-

ing. The model treats the adjacent SNP sites as points in
a Markov chain and assigns a probability to an event with ref-
erence to the neighboring sites, thus taking into account the
sequencing error rate, the genotypes of adjacent SNPs, and the
physical distances between SNPs. Such treatment transformed
the low-quality SNP data of RILs into a high-quality bin map.
We conducted Monte Carlo simulations to assess the effects of

the factors that may affect the accuracy of MPR inference (SI
Results). We found that the parental genotypes of most SNP sites
could be deduced correctly even under SNP density of nearly
500 kb/SNP (Fig. S3C), a condition that most recombinant
populations can meet (22). The simulation results also show that
the use of 110 RILs is adequate to obtain an accuracy of 99% in
inferring parental genotypes with SNP density no less than 49 kb/
SNP under the sequencing coverage in this study (Fig. S4B).
However, smaller numbers of RILs should be compensated by
more sequencing per line to achieve proper coverage of the
genome, and vice versa. Empirically, the total sequencing cov-
erage of the population should not be less than 8× genome to
provide power for reducing the false discovery rate. Although the
influence of the window size at high SNP densities is small, under
low SNP densities a larger window size leads to lower accuracy
(Fig. S4A). A greater maximum step size of the perturbation
would be more robust for obtaining the minimum number of
recombination events, but it consumes more computational

resources. As a tradeoff, we recommend setting parameters of
the window size between 30 and 70 and a maximum step size of
3 for performing the MPR algorithm. We also evaluated the
performance of MPR inference on simulated populations with
different heterozygosity (SI Results). The simulation results
showed that over 98% of the parental genotypes can be inferred
correctly even when heterozygosity is 50% (Fig. S5). These
results have significant implications for the potential applicability
of the method, including applications in other species and pop-
ulations other than RILs and even F2 populations.
The current Illumina Genome Analyzer IIx sequencing system

has a throughput of 50 Gb per run, which allows sequencing
a mouse population of 200 strains with 0.1× genome sequence
per strain well within a single run. Because a plethora of new
genome assemblies is available and various kinds of mapping
populations have been constructed in many species, including
plants (23, 24) and animals (25–27), the method developed
here will be generally applicable and cost-effective for genotyp-
ing of mapping populations.

Materials and Methods
DNA Sequencing, Sequence Alignment, and Identification of Potential SNPs.
Total genomic DNA was isolated from leaf tissues of RILs (17) using the cetyl-
trimethyl ammonium bromide (CTAB) method. DNA sequencing followed
essentially the procedures previously described (7). The latest version of ge-
nomic pseudomolecules of Oryza sativa L. ssp. japonica cv. Nipponbare was
downloaded fromMichigan StateUniversity (MSUassembly release 6.0, http://
rice.plantbiology.msu.edu). All 36-mer read pairs of each RIL were aligned to
the pseudomolecules using the software MAQ (11). A read pair with the two
sequencesmapped to identical positionswas removed (with the“maqrmdup”
command). MAQ provides scores for the base quality and mapping quality of
Illumina-derived sequences. Base quality is analogous to phred scores (28)
measuring the probability for the base call to be an error. Mapping quality of
a readmeasures the confidence that a read is aligned correctly to the position
where it is from. Low mapping quality scores indicate that there is more than
one site in the genome where the read could be placed. To identify potential
SNP sites, all mapping results of each RIL were merged in a mapping file. Base
composition and base qualities on each genomic positionwere obtained from
MAQwith the parameters “maq pileup –vP –q 40” using themergedmapping
file. Reads with mapping quality ≥40were selected for subsequent analysis. A
potential SNP site should be biallelic in RILs andwas identifiedwhen satisfying
the following criteria: (i) only two different nucleotides appeared on this
positionwith a sumofbasequality for eachnucleotide≥60; (ii) eachof the two
nucleotides was supported by at least four reads; (iii) at least one base call of
each nucleotide had base quality ≥20; and (iv) the sequencing depth was no
more than 30 to avoid repetitive sequences.

Deducing Parental Genotypes and Filtering Out Inferior SNP Markers. Bayesian
inference based on resampling procedures was used to determine parental
genotypes andfilter out inferior SNPs. For an allele at a given SNP site, assume
there are n independent genotype calls obtained from the resampling pro-
cedures and the error rate of parental genotype calling using the MPR algo-
rithm isE. Under the conditionof theallele coming fromparent 1 (P1) or parent
2 (P2), or that it is an inferior SNP (PN), the probability of observing k genotype
calls of parent 1 for the allele would each follow a binomial distribution:

PðkjP1Þ ¼
�
n
k

�
ð1−EÞk En− k [1]

PðkjP2Þ ¼
�
n
k

�
Ek ð1−EÞn− k [2]

PðkjPNÞ ¼
�
n
k

�
ð0:5Þn: [3]

Let P(P1|k), P(P2|k), and P(PN|k) be the posterior probabilities that the allele
comes from P1, P2, or PN given the observed k genotype calls of parent 1.
These probabilities were calculated as
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PðP1jkÞ ¼ PðkjP1Þ PðP1Þ
PðkÞ [4]

PðP2jkÞ ¼ PðkjP2Þ PðP2Þ
PðkÞ [5]

PðPN jkÞ ¼ PðkjPNÞ PðPNÞ
PðkÞ : [6]

The genotype of the allele is determined based on the highest posterior
probability at the given SNP site:

max fPðP1jkÞ;PðP2jkÞ;PðPN jkÞ :g [7]

The probability of a site being an inferior SNP site P(PN) is estimated as the
proportionof inferior SNPs in all SNP sites, and theprobability of theallele from
parent 1 P(P1) or parent 2 P(P2) is P(P1) = P(P2) = (1 − P(PN))/2. We began with
P(P1) = P(P2) = P(PN) = 1/3, and new estimates of P1, P2, or PN were obtained by
iteration until the estimates were stabilized. SNP sites with the highest poste-
rior probability of P(PN|k) will be removed. In addition, we found that the ge-
notype calls of an allele at a high-quality SNP sitewould usually be consistent. If
there are two observed genotypes for an allele, a restriction on the number of
genotype calls of the minor genotype could further remove inferior SNPs.

Genotype Calling Using the Hidden Markov Model. Rawgenotypesof SNPswere
assignedaccording to thededuced parental genotypes. To construct theHMM,
we estimated transition probability (the probability to move from one ho-
mozygous genotype to another homozygous genotype or homozygous ge-
notype to heterozygous genotype) by assuming1 centimorgan (cM) per 244 kb
basedonprevious studies (29),whichwas used to convert thephysical distances
between SNPs to genetic distances as well as to recombination probabilities
using the Haldane map function. Assuming the sequence error rate as E, the
emission probability (the probability to observe a certain genotype at an SNP
site when given a hidden genotype) from a homozygous genotype to itself
was 1 − E and to another homozygous genotype was E. The emission from
a heterozygous genotype to the two homozygous genotypes had the same
probability of 0.5, but emission probability of a given heterozygous genotype
to be consecutively observed as a homozygous genotype would decrease by
a factor of 0.5, for example, the second 0.25 and the third 0.125. Probabilistic
parameters of the hidden Markov model are shown in Fig. 3B.

Software and Data Availability. An R package MPR was developed with these
algorithms for parental genotype inference and bin map construction. The
MPR package, SNPmarkers, and population data are available at http://www.
ncpgr.cn/supplements/MPR_genotyping. The raw Illumina sequencing data
from this study have been submitted to the NCBI Sequence Read Archive
under accession number SRA012177.
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